The upper edge geodetic number and the forcing edge geodetic number of a graph
نویسندگان
چکیده
منابع مشابه
The Upper Edge Geodetic Number and the Forcing Edge Geodetic Number of a Graph
An edge geodetic set of a connected graph G of order p ≥ 2 is a set S ⊆ V (G) such that every edge of G is contained in a geodesic joining some pair of vertices in S. The edge geodetic number g1(G) of G is the minimum cardinality of its edge geodetic sets and any edge geodetic set of cardinality g1(G) is a minimum edge geodetic set of G or an edge geodetic basis of G. An edge geodetic set S in ...
متن کاملThe upper connected edge geodetic number of a graph
For a non-trivial connected graph G, a set S ⊆ V (G) is called an edge geodetic set of G if every edge of G is contained in a geodesic joining some pair of vertices in S. The edge geodetic number g1(G) of G is the minimum order of its edge geodetic sets and any edge geodetic set of order g1(G) is an edge geodetic basis. A connected edge geodetic set of G is an edge geodetic set S such that the ...
متن کاملOn the edge geodetic and edge geodetic domination numbers of a graph
In this paper, we study both concepts of geodetic dominatingand edge geodetic dominating sets and derive some tight upper bounds onthe edge geodetic and the edge geodetic domination numbers. We also obtainattainable upper bounds on the maximum number of elements in a partitionof a vertex set of a connected graph into geodetic sets, edge geodetic sets,geodetic domin...
متن کاملThe upper forcing edge-to-vertex geodetic number of a graph
For a connected graph G = (V,E), a set S ⊆ E is called an edge-to-vertex geodetic set of G if every vertex of G is either incident with an edge of S or lies on a geodesic joining some pair of edges of S. The minimum cardinality of an edge-to-vertex geodetic set of G is gev(G). Any edge-to-vertex geodetic set of cardinality gev(G) is called an edge-to-vertex geodetic basis of G. A subset T ⊆ S i...
متن کاملThe forcing geodetic number of a graph
For two vertices u and v of a graph G, the set I(u, v) consists of all vertices lying on some u − v geodesic in G. If S is a set of vertices of G, then I(S) is the union of all sets I(u, v) for u, v ∈ S. A set S is a geodetic set if I(S) = V (G). A minimum geodetic set is a geodetic set of minimum cardinality and this cardinality is the geodetic number g(G). A subset T of a minimum geodetic set...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Opuscula Mathematica
سال: 2009
ISSN: 1232-9274
DOI: 10.7494/opmath.2009.29.4.427